

Welche Grenzwerte sind messbar?

Prof. Dr. Dietmar Breuer Institut für Arbeitsschutz der DGUV Chemische und biologische Einwirkungen

Inhalte

- Grundlagen für die Messtechnik
- Wo ist der "Konflikt"?
- Beispiele
- Lösungsansätze

Anforderungen an Messverfahren

 DIN-EN 482 (neu ISO 20581). Workplace air - General requirements for the performance of procedures for the measurement of chemical agents

 Mindestm 	essbereich:	0,1 - 2 GW	Faktor 20!
• Messunsi	cherheit:	0,1 - 0,5 GW	50 %
		0,5 – 2 GW	30 %
 Dampf/Pa 	rtikel-Gemische	0,1 - 2 GW	50 %
 Kurzzeitw 	erte (15 Min)	0,5 – 2 GW	50 %

- Ein Messverfahren muss im festgelegten Messbereich ein eindeutiges Ergebnis für die Konzentration des gemessenen chemischen Arbeitsstoffes liefern
- Das Messverfahren muss eine entsprechende Angabe über die Art und die Größenordnung von Störkomponenten enthalten.

Sonderregelung für krebserzeugende Stoffe

- TRGS 402: Ausnahme f
 ür Stoffe mit AK/TK
 - 1. Das Messverfahren deckt den vollen Messbereich ab:

Mindestmessbereich	0,2 AK bis 2 TK	
Messunsicherheit	0,2 AK – <mark>AK</mark>	50 %
	> AK	30 %

2. Das Messverfahren deckt nur den Messbereich für die AK ab:

Mindestmessbereich	0,2 AK bis 2 AK	
Messunsicherheit	0,2 AK – <mark>AK</mark>	50 %
	> AK	30 %

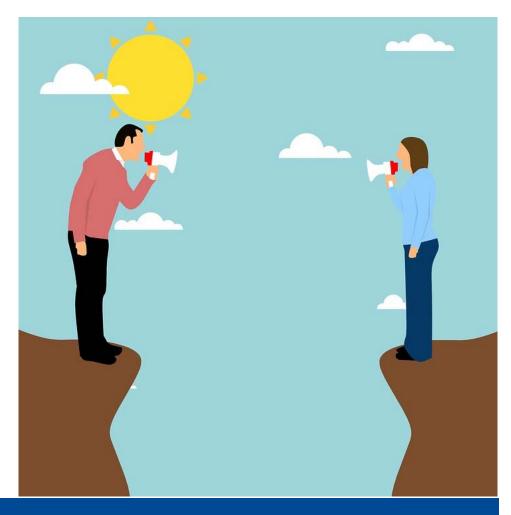
3. Das Messverfahren deckt nur den Messbereich der TK ab: Es gelten die Anforderungen nach DIN EN 482/ISO 20581

Weitere Anforderungen

Partikelprobenahme DIN EN 481 (ISO 7708)

Gase/Dämpfe
 DIN EN 1076 aktive PN (ISO CD 22065)

DIN EN 838 passive PN (ISO WD 23320)


Metalle/Metalloide DIN EN 13890 (ISO CD 21832)

Partikel/Dampf-Gemische DIN EN 13936 (ISO in Vorbereitung)

Wo ist nun der Konflikt?

- Grenzwerte sind früher da!
- Ein Messverfahren ist für die Ableitung eines GW nicht erforderlich.
- Experimente zur Ableitung von GW werden mit "Reinsubstanzen" bei hohen Konzentrationen gemacht.
 - Messtechnische Probleme stellen sich dabei nicht (oder selten).
- Oft sind die abgeleiteten GW sehr niedrig!
 - Akzeptanzkonzentrationen

Doch wie sieht die Situation am Arbeitsplatz aus?

- Am Arbeitsplatz ist die Situation grundsätzlich anders als im Labor!
- Viel geringere Konzentrationen
- Ein Arbeitsplatz kann dreckig sein!
- Nicht nur eine Substanz
- Querbeeinflussungen
- Inhomogene Verteilung
- •

Beispiel 1: Niedriger Grenzwert

- Besonders stark betroffen sind krebserzeugende Stoffe
- Nach dem Risikokonzept abgeleitete Grenzwerte (AK/TK) sind deutlich niedriger als nach technischen Konzepten abgeleitete Werte!
- Die Anforderungen an die Empfindlichkeit von Messverfahren sind deutlich höher!
- Ältere, robuste Verfahren können oft nicht mehr eingesetzt werden

Probleme:

- Methoden müssen wesentlich überarbeitet bzw. vollständig neu entwickelt werden
 - Beispiele: Benzol, PAK (Benzo[a]pyren), Metalle
- Höherer Aufwand für die Methodenentwicklung
- Höherer Aufwand für die "tägliche" Arbeit
 - Hoch empfindliche Verfahren erfordern häufig sehr viel mehr "Pflege"
 - FID Kalibrierungen können über Monate stabil sein
 - MS-Kalibrierungen sind im ungünstigsten Fall arbeitstäglich zu erstellen
 - Die Technik eines MS ist sehr viel komplexer und störanfälliger

Benzol

- Grenzwerte:
 - TK^{4:1000}: 1900 μg/m³
 - AK^{4:10.000}: 200 μg/m³
 - AK^{4:100.000}: 20 μg/m³
 - BOELV (EU) 3,25 mg/m³
- Geforderter Messbereich:
 - $40 3800 \, \mu g/m^3$
 - $4 3800 \,\mu\text{g/m}^3$ Faktor 950!

- Das alte Messverfahren (*IFA 6265-1*)
 erfüllte nicht mehr die Anforderungen
 für die Bewertung der AK
 - Aktivkohle mit Lösemitteldesorption und GC/FID
 - Messbereich 100 15.000 μg/m³
- Grundlegende Neuentwicklung (IFA 6265-2)
 - Carbopack B/Carbopack X mit Thermodesorption-GC-MS
 - Messbereich 2 200 μg/m³

Benzo[a]pyren (PAK)

- Grenzwerte:
 - TK^{4:1000}: 0,7 μg/m³ (E)
 - AK^{4:10.000}: 0,07 μg/m³ (E)
 - AK^{4:100.000}: 0,007 μg/m³ (E)
- Geforderter Messbereich:
 - 0,014 1,4 μg/m³
 - $0.0014 1.4 \mu g/m^3$ Faktor 1000!

- Das alte Messverfahren erfüllte nicht mehr die Anforderungen für die Bewertung der AK
 - PTFE-Filter und XAD-2 (120 L Probeluft) mit Lösemitteldesorption und HPLC/DAD
 - Messbereich (BaP) 0,2 8 μg/m³
- Grundlegende Neuentwicklung
 - PTFE-Filter (1200 L Probeluft) mit Lösemitteldesorption und HPLC/DAD
 - Messbereich (BaP) 0,0035 1,4 μg/m³

Metalle: Beispiel Cd

- Grenzwerte:
 - TK 1,0 μg/m³ (E)
 - $AK^{4:10.000}$ 0,16 μ g/m³ (A)
 - AK^{4:100.000} 0,016 μg/m³ (A)
- Geforderter Messbereich:
 - $0.1 2.0 \,\mu\text{g/m}^3$ (E)
 - $0.032 0.32 \,\mu g/m^3$ (A)
 - $0.0032 0.032 \,\mu\text{g/m}^3$ (A)

- Umstellung der Analytik auf ICP-MS-Technik
- Es können nur geprüfte Filtermaterialien verwendet werden (Blindwerte)
 - Bestimmungsgrenze ohne chargengeprüfte Filter:
 0,5 µg/m³ (1,2 m³)
 0,13 µg/m³ (4,8 m³)
 - Bestimmungsgrenze mit chargengeprüften Filtern: 0,007 µg/m³ (1,2 m³)

Metalle: Beispiel Cd

- Es sind zwei Messungen für A- und E-Staub notwendig
- Verlängerung der Probenahmedauer
 - Abkehr von der "liebgewordenen 2-Stunden-Messzeit"
- Wesentlich größerer Aufwand bei der Auswahl der Materialien
 - chargenabhängige (geprüfte) Filtermaterialien
 - hochreine Chemikalien (Preis)
- Verbesserung der baulichen Voraussetzungen k\u00f6nnen notwendig werden Reinraumtechniken
- Vorteil:
 - Das Multielementverfahren ICP-MS wird zum Standard! (Fast) alle Metalle aus einer Probe!

Beispiel 2: Eindeutigkeit/Selektivität

- Großes Problem hier sind zahlreiche Speziesgrenzwerte
- Häufig sind die Spezies nicht eindeutig zu identifizieren
- Die Verbindung mit Grenzwert ist analytisch nicht von einer nicht eingestuften (ungefährlichen) Substanz zu unterscheiden
- Beispiele:
 - CaO/Ca(OH)₂, Essigsäure/Essigsäureanhydrid
 - Schwefelsäure, Chlorwasserstoff, NaOH, KOH,... etc.
 - Diindiumtrioxid, Indium, Indiumhydroxid (AGW seit 12/2017)

CaO/Ca(OH)₂; Essigsäure/Essigsäureanhydrid

- Analytisch sind nur Calcium oder Acetat nachweisbar!
 - Wasser ist am Arbeitsplatz praktisch immer vorhanden (Luftfeuchte)
- Bei CaO führt die Reaktion mit Wasser zu Ca(OH)₂
 - AGW jeweils 1 mg/m³
 - Ca(OH)₂ ist "strenger" bewertet als CaO
 - Andere Calciumverbindungen wie Gips, Calciumcyanamid haben ebenfalls einen AGW oder haben keine Grenzwerte!
- Bei Essigsäureanhydrid führt die Reaktion mit Wasser zu Essigsäure
 - AGW, Essigsäure 25 mg/m³; Essigsäureanhydrid 21 mg/m³
 - Acetate wie z. B. Natriumacetat haben keinen Grenzwert.
 - MAK-Liste 2018: Essigsäureanhydrid 0,42 mg/m³

Weitere Beispiele in der Liste der geeigneten Messverfahren

- BAuA Homepage
 - https://www.baua.de/DE/Aufgaben/Geschaeftsfuehrung-von-Ausschuessen/AGS/pdf/Messverfahren.pdf?__blob=publicationFile&v=4
- Die Liste führt nur geeignete und geprüfte Messverfahren!
- Inhalt:
 - Alle Stoffe mit AK/TK
 - Alle in 2016 und 2017 neu veröffentlichten Stoffe mit AGW
 - 83 Stoffe davon 36 mit der Bemerkung "kein empfohlenes Messverfahren verfügbar"
 - Glycerin, Pentanole, NO, NO₂,uvm.

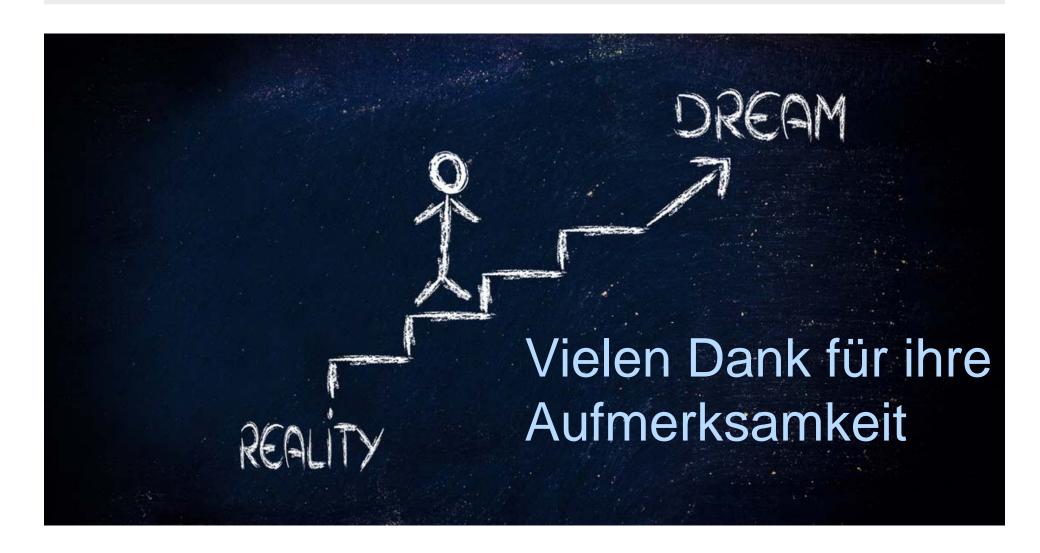
Kein Messverfahren verfügbar

- Die Liste der Messverfahren wird auf alle Stoffe mit Grenzwert (AGW, TK/AK, etc.) erweitert, sie erscheint voraussichtlich Anfang 2019
- Es gibt zahlreiche Stoffe, für die kein Messverfahren verfügbar ist!
 - Nicht nur neue Grenzwerte und "Exoten"
 - Es gibt keine beschriebene Methode
 - Beschriebene Methode(n) erfüllen die Anforderungen bei weitem nicht
 - Stand jetzt: Für etwa 1/3 der Stoffe mit Grenzwert gibt es gar kein bzw. kein geeignetes Messverfahren
 - nur für einen Bruchteil dieser Stoffe sind in ausländischen Sammlungen (NIOSH etc. Verfahren beschrieben)
- Prioritätenliste für die Entwicklung von Messverfahren ist in Vorbereitung!

Publikationen als Hilfestellungen des AK Messtechnik in Gefahrstoffe-Reinhaltung der Luft

- 2017
 - Heft 1: Möglichkeiten zur Verbesserung der Bestimmungsgrenze und des Arbeitsbereiches eines Messverfahrens
 - Heft 11: Analytische Bestimmung von Metallen in der Luft an Arbeitsplätzen
- 2018
 - Heft 7/8: Bedarf für die Entwicklung von Messverfahren für Arbeitsplatzmessungen
 - Heft 10 (im Druck): Empfehlung für die Berücksichtigung klimatischer Bedingungen bei Arbeitsplatzmessungen

Bitte helfen Sie uns!


- Aufruf an alle Messstellen, ihre Verfahren in die entsprechenden Gremien bei der DFG, AG-Analytik oder dem IFA einzureichen!
 - Wir geben maximale Hilfestellung!
- Bereitstellung von Mitteln für die Methodenentwicklung um die Löcher zu stopfen!
- Zukünftig schon parallel zur Ableitung von Grenzwerten die Frage nach Messverfahren stellen und, falls notwendig, parallel Mittel bereit stellen!

Der Traum eines Chemikers

