

Untersuchungsprogramm

- Arbeitsplatzmessungen und Wirksamkeitsüberprüfung von Schutzmaßnahmen in 10 Betrieben
- Abfüllung fester Stoffe in Pulverflaschen, Schlauchbeutel, Eimer und Kartons mit Kunststoffliner, Kanister, Säcke (Papier, Plastik), Fässer, Big Bags

(25 g – 1,5 t / Behälter)

- Messtrategie vergleichbar

 mit Abfüllung von Lösemitteln
- Abfüllung an Abfüllstation oder manuell mit Handschaufel

Messstrategie

- jeweils 3 Messpunkte/Messung
- gleichzeitig: alveolengängige und einatembare Staubfraktion
- MP 1: ortsfest direkt an der Einfüllstelle (Wirksamkeitsprüfung)
- MP 2: personengetragen am Beschäftigten (Arbeitsplatzmessung)
- MP 3: ortsfest im Arbeitsbereich (Ausbreitung) insgesamt 6 Messwerte pro Messung
- Staubwerte nach DIN EN 15051 3

MP 1

MP 2

Tätigkeitsbezogene Staubmessungen

- 57 Messserien in 10 Betrieben
- Mindestmessdauer 1 h
- keine Inhaltsstoffe der Staubfraktionen bestimmt
- nur Arbeitsplätze mit Erfassungstechnik
- 2 SEGs nach DIN EN 689
 - manuelle Abfüllung mittels Handschaufel
 - Abfüllstation (freier Fall)
 - getrennte Betrachtung bei der Auswertung

Untersuchung des Staubungsverhaltens

- Materialproben aller abgefüllten Stoffe
- gemäß DIN EN 15051 3 "Exposition am Arbeitsplatz Messung des Staubungsverhaltens von Schüttgütern: Verfahren mit kontinuierlichem Fall (Durchführung: IGF der BG RCI, Bochum)
- standardisierte Bedingungen
- Ermittlung der Staubwerte W_R und W_I (freigesetzte Masse A/E-Staub/Fallmasse [mg/kg])

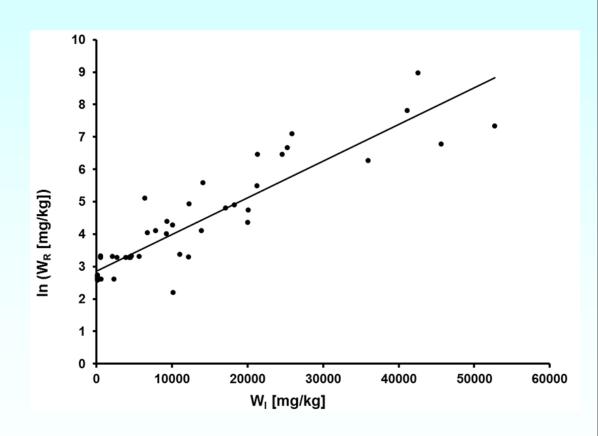
Staubwerte

Kategorisierung [mg/kg] nach DIN EN 15051-3 (56 Stoffe)

Staubwert W_R nach DIN EN 15051-3	Staubwert W _I nach DIN EN 15051-3	Freisetzungs- gruppe EMKG	Beispiele
staubarm (< 20) gering staubend (20-70)	staubarm (< 1 000) gering staubend (1 000-4 000)	niedrig -	Zitronensäure, Kaliumchlorid, Bernsteinsäureanhydrid, Natriumborhydrid
staubend (> 70-300)	staubend (> 4 000-15 000)	mittel	Calciumhydroxid
stark staubend (> 300)	stark staubend (> 15 000)	hoch	Kupfer(II)-chlorid (wasserfrei) Natriumacetat

- 42 % der Stoffe: unterschiedliche Kategorien f
 ür W_R und W_I
 gemäß DIN EN 15051-3
- 30 % der Stoffe: unterschiedliche Freisetzungsgruppe der beiden Staubfraktionen nach EMKG (mit einer Ausnahme nur Gemische mit Handelsnamen)

Korrelation zwischen W_R und W_I ?


- 3 sehr stark staubende Stoffe nicht berücksichtigt (> Messbereich)
- Staubwert < Bestimmungsgrenze (BG), dann BG eingesetzt
 - Exponentialfunktion

$$W_R = 17.5 * e^{0.00011 * W_I}$$

mit
$$R^2 = 0.84$$

(lin.:
$$R^2 = 0.26$$
 dopp. $log.: R^2 = 0.61$)

R² = Bestimmtheitsmaß

Manuelle Abfüllung fester Stoffe

- 4 Betriebe
- 24 bis 150 Gebinde befüllt
- 250 g bis 25 kg / Gebinde
- "Übertragungsstrecke" ca. 0,5 m (ohne zusätzliche Absaugung)

Messpunkt	Anzahl der	Minimum	Maximum	Median	95-Perzentil		
	Messungen	[mg/m³]	[mg/m³]	[mg/m³]	[mg/m³]		
alveolengängige Staubfraktion							
MP 1	13	< 0,11	0,77	-	-		
MP 2	13	< 0,11	4,37	-	3,90		
MP 3	12	< 0,06	0,51	-			
einatembare Staubfraktion							
MP 1	13	< 0,17	22,6	0,89	17,8		
MP 2	12	0,19	69,5	1,01	41,8		
MP 3	13	< 0,03	3,49	0,21	3,09		

<: Messwert kleiner Bestimmungsgrenze

^{-:} keine Auswertung bezüglich Median und 95-Perzentil, da Anteil der Messwerte unter der Bestimmungsgrenze größer 50 % bzw. 90 %

Abfüllung fester Stoffe an Abfüllstationen

- 8 Betriebe
- 13 bis 56.000 Gebinde befüllt
- 25 g bis 1,5 t / Gebinde

Messpunkt	Anzahl der	Minimum	Maximum	Median	95-Perzentil	
	Messungen	[mg/m³]	[mg/m³]	[mg/m³]	[mg/m³]	
alveolengängige Staubfraktion						
MP 1	44	< 0,08	6,45	0,29	1,39	
MP 2	41	< 0,06	1,00	-	0,99	
MP 3	44	< 0,02	0,75	0,12	0,56	
einatembare Staubfraktion						
MP 1	44	0,17	118	1,43	22,0	
MP 2	41	0,13	36,8	0,82	13,6	
MP 3	44	0,04	13,6	0,31	3,17	

< Messwert kleiner Bestimmungsgrenze

^{-:} keine Auswertung bezüglich Median, da Anteil der Messwerte unter der Bestimmungsgrenze größer 50 %

Emissionsmindernde Maßnahmen

manuelle Abfüllung

- Absaugung der "Übertragungsstrecke"
- Einfülltrichter mit Aussparung
- korrekte Positionierung der Absaugung direkt neben oder über dem zu befüllenden Gebinde

Abfüllstationen

- <u>Big Bags</u>: unbenutzte Big Bags verwenden; Sichtscheiben installieren
- <u>Säcke</u>: Absetzdauer des Füllgutes verlängern (Arbeitsorganisation) Installation einer Prallplatte (verringert Staubausbreitung)
- ggf. zusätzliche Absaugung

Korrelation zwischen C_R und C_I ?

- seit vielen Jahren "Umrechnungsversuche"
- umfangreichste Untersuchung von Wippich et al. für 15120 Parallelmessungen (DGUV-Report 1/2020) :
 - Potenzfunktion am besten geeignet
 - verschiedene Tätigkeits- (6) und Materialgruppen (3)

Ergebnisse BAuA:

- getrennte Betrachtung: manuell vs. Abfüllstation
- nur personengetragene Messungen (MP2)
- manuelle Abfüllung: R² < 0,18
- Abfüllstationen: $c_R = 0.254 * c_I^{0.339}$ mit R² = 0.57 wenn Umrechnung, dann Potenzfunktion

Korrelation zwischen C_R und W_R bzw. C_I und W_I ?

Lässt sich Staubbelastung am Arbeitsplatz aus Staubwerten vorhersagen?

- nur Fälle betrachtet mit R² > 0,5
- lineare Korrelation immer mit den höchsten R²

$$c_{R,I} = a + b * W_{R,I}$$

einatembare Staubfraktion

MP 1: bei manueller Abfüllung $R^2 = 0.82$

MP 2: bei manueller Abfüllung $R^2 = 0.64$

an Abfüllstationen R² = 0,86

Nutzen der Staubwerte

- für alveolengängige Staubfraktion wenig aussagekräftig bezüglich Luftbelastung
- Ableitung von Schutzmaßnahmen auf Grundlage des Staubwertes der einatembaren Staubfraktion
- Staubwerte für die einatembare Staubfraktion ermöglichen quantifizierbare Kategorisierung des Freisetzungspotenzials im Rahmen des EMKG

Fazit

- entwickelte Messstrategie zur Wirksamkeitsprüfung hat sich bewährt
- Staubwerte für einatembare Fraktion nutzbar zur Charakterisierung des Freisetzungsvermögens
 - → **EMKG**
 - → **Expositionsszenarien**
- "Umrechnung" A-/E-Staub mittels Potenzfunktion
- Korrelation Staubwerte A/E → Kausalität ?

Darstellung wirksamer Schutzmaßnahmen

Videos

Feste Stoffe sicher abfüllen - Handlungshilfen für das Befüllen von Gebinde

https://www.baua.de/DE/Themen/Arbeitsgestaltung-im-Betrieb/Gefahrstoffe/Arbeiten-mit-Gefahrstoffen/Feststoffe.html

Vielen Dank für Ihre Aufmerksamkeit

